Scheme of teaching and examination
B.E. IV Semester Information Technology

<table>
<thead>
<tr>
<th>S.No</th>
<th>Board of Study</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Periods per week</th>
<th>Scheme of Exam</th>
<th>Total Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>ESE</td>
</tr>
<tr>
<td>1</td>
<td>Appl. Mathematics</td>
<td>322411(14)</td>
<td>Computational Mathematics</td>
<td>4</td>
<td>1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>Appl. Mathematics</td>
<td>322412(14)</td>
<td>Discrete Structure</td>
<td>3</td>
<td>1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>Comp. Sci. & Engg.</td>
<td>322413(22)</td>
<td>Data Structures</td>
<td>3</td>
<td>1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Electronics & Telecomm.</td>
<td>328413(28)</td>
<td>Analog Electronic Circuits</td>
<td>3</td>
<td>1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Comp. Sci. & Engg.</td>
<td>322415(22)</td>
<td>Object Oriented Concepts & Programming using C++</td>
<td>3</td>
<td>1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>Management</td>
<td>322416(36)</td>
<td>Principles of Management</td>
<td>3</td>
<td>1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>Info. Technology</td>
<td>333421(33)</td>
<td>Software Technology Lab - 1</td>
<td>4</td>
<td>0</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Info. Technology</td>
<td>333422(33)</td>
<td>Data Structures Lab</td>
<td>3</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Electronics & Telecomm.</td>
<td>333423(28)</td>
<td>Analog Electronic Circuits Lab</td>
<td>3</td>
<td>40</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>Info. Technology</td>
<td>333424(33)</td>
<td>Object Oriented Concepts & Programming using C++ Lab</td>
<td>3</td>
<td>40</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>Humanities etc.</td>
<td>300425(46)</td>
<td>Health, Hygiene and Yoga</td>
<td>2</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>Library</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>19</td>
<td>6</td>
<td>16</td>
<td>640</td>
</tr>
</tbody>
</table>

L-Lecture, T- Tutorial, P- Practical, ESE- End Semester Examination, CT- Class Test, TA- Teacher's Assessment

Note (1): Duration of all theory papers will be of **Three Hours**.

Note (2): Industrial Training of six weeks is mandatory for B.E. student. It is to be completed in two parts. The first part will be in summer after IV sem. after which students have to submit a training report which will be evaluated by the college teachers during during B.E. V sem.
UNIT– 1 NUMERICAL SOLUTIONS OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS
(No. of periods 8+2)
Bisection Method, Regula-Falsi Method, Newton-Raphson Method, Secant Method, Birge-Vieta Method,
Bairstow’s Method.

UNIT– 2 NUMERICAL SOLUTIONS OF SIMULTANEOUS LINEAR EQUATIONS
(No. of periods 8+2)
Direct Methods - Gauss Elimination, Gauss-Jordan & Crout’s Triangularisation Method.
Iterative Methods - Jacobi’s, Gauss- Siedal & Successive Over Relaxation Method.

UNIT – 3 INTERPOLATION WITH EQUAL AND UNEQUAL INTERVALS
(No. of periods 8+2)
Finite differences, Newton’s Forward & Backward Difference Formulae, Central Difference Formula,
Stirling’s Formula, Bessel’s Formula, Lagrange’s Formula and Newton’s Divided Difference Formula.

UNIT – 4 NUMERICAL DIFFERENTIATION AND INTEGRATION
(No. of periods 8+2)
Derivatives using Forward, Backward and Central Difference Formulae.
Newton-Cote’s Quadrature Formula, Trapezoidal rule, Simpson’s rules, Weddle’s rule.

UNIT – 5 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
(No. of periods 8+2)
Picard’s Method, Taylor’s Series Method, Euler’s Method, Euler’s Modified Method, Runge-Kutta Methods,

TEXT BOOKS:
 Jain, Wiley Eastern Limited.

REFERENCE BOOKS:
UNIT – 1 MATHEMATICAL LOGIC & BOOLEAN ALGEBRA (No. of periods 8+2)
Basic concept of mathematical logic, Statements, Connectives, Conditional and biconditional statements, Logical equivalence, Logical implication & quantifiers, Basic concept of Boolean Algebra, Properties of Boolean Algebra, Boolean functions, Disjunctive & conjunctive normal forms of Boolean functions, Applications of Boolean Algebra in switching circuits & logic circuits.

UNIT – 2 SET THEORY, RELATIONS, FUNCTIONS (No. of periods 8+2)
Basic concept of set theory, Relations, Properties of relation in a set, Equivalence relation, Composition of relations, Partial order & total order relations, Lattices & Hasse diagram, Introduction to function, Inverse, Identity, Injective, Surjective & Bijective functions, Composition of functions and some special functions.

UNIT – 3 ALGEBRAIC STRUCTURES (No. of periods 8+2)
Groups, Subgroups, Cosets, Lagrange’s theorem, Isomorphism, Automorphism, Homomorphism, Codes & group codes, Rings, Integral domains and Fields.

UNIT – 4 GRAPH THEORY (No. of periods 8+2)
Introduction to graph theory, Walks, Paths & Circuits, Types of graphs, Shortest path problems, Eulerian and Hamiltonian graphs, Basic concept of tree: spanning tree, minimum spanning tree, search tree, rooted binary tree, Cut sets, Network flow, Matrix representation of graphs.

UNIT – 5 COMBINATORICS (No. of periods 8+2)
Permutation and combination, Pigeon-hole principle, Mathematical induction, Principle of Inclusion and Exclusion, Generating function, Recurrence relation.

TEXT BOOKS: -
2. Discrete Mathematical structures, by Bernard Kolman, Robert C. Busby and Sharon Cutler Ross, Pearson Education.

REFERENCE BOOKS: -
1. A Text Book of Discrete Mathematics, Swapan Kumar Sarkar, S. Chand & Company Ltd.
2. Graph theory with applications to engineering and computer science, by Narsingh Deo, Prentice Hall of India.
Unit –1 Simple Linear Data Structure Array
(No. of periods 8+2)
Representation of Linear Arrays in Memory, Traversing Linear Array, Inserting and Deleting, Searching: Linear and Binary, Sorting: Bubble, Selection, Insertion, Quick, Merge, Heap. Polynomial Addition, Representation of Multidimensional Array in memory, Representation of Sparse Matrices and its Transpose Algorithm.

Unit-2 Linear Linked List
(No. of periods 8+2)
Singly Linked List: Representation in Memory, Traversing, Searching, Memory Allocation, Garbage Collection, Insertion into a linked list, Deletion from a linked list, Header Linked List, Polynomial Addition, Circular Linked List, Operations on Doubly Linked List: traversing, Searching, Deleting, Inserting.

Unit-3 Stack, Queue and Recursion
(No. of periods 8+2)
Stacks: Array Representation, Linked Representation, Arithmetic Expression, Polish Notation, Recursion, Towers of Hanoi, Queues: Array Representation, Circular Queues, Linked Representation, D-Queues, Priority Queues.

Unit-4 Non-Linear Data Structure Graphs
(No. of periods 8+2)
Binary Trees, Representation of binary Trees in Memory, Traversing binary trees, Traversal algorithm using stacks, Header nodes, Threads, Binary search trees, Searching, Inserting and Deleting in a binary search trees, AVL search tree, Insertion and Deletion in an AVL search Tree, m-way search tree, Searching Insertion and Deletion in an m-way search tree, Searching, Insertion and Deletion in a B- tree.

Unit-5 Non-Linear Data Structure Graphs
(No. of periods 8+2)
Graph theory terminology, Sequential Representation of Graphs, Adjacency Matrix, Path Matrix, Warshall’s algorithm, Shortest Paths, Linked Representation of a Graph, Operations on Graph, Traversing on Graphs, Posets, Topological Sorting.

Name of Text Books :
1. Data Structure by Seymour Lipschutz & G. a. Vijayalaksmi Pai (Schaum’s outlines)
2. Data Structures using C/C++ by Langsam, Augenstein & Tannenbaum (PHI)
3. Data Structures & Program Design by Robert L Kruse (PHI)

Name of Reference books :
1. An Introduction to Data Structures with Application by Tremblay & Sorenson (Tata Mc)
2. Data Structures using C by ISRD Group (Tata Mc)
3. Classic Data Structure by D Samanata, Prentice-Hall of India
UNIT-I
LOW FREQUENCY TRANSISTOR AMPLIFIER: Graphical Analysis of CE amplifier; h-parameter Models for CB, CE, CC configurations and their Interrelationship; Analysis and Comparison of the three Configurations; Linear analysis of Transistor Circuits: Miller's Theorem: Cascading: Simplified Models and Calculation of CE and CC Amplifiers; Effect of emitter Resistance in CE amplifiers: Cascode amplifiers: Darlington Pair, analysis of Single stage FET amplifier-CS and CD Configuration, FET as VVR.

UNIT-II

UNIT-III

UNIT-IV

UNIT-V

Name of Text Books:
1. Integrated Electronics – Millman & Halkias, TMH.
2. Microelectronics – Millman and Grabel, TMH.

Name of Reference Books:
1. Electronic Devices & Circuits – David A. Bell, PHI
CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY,
BHILAI (C.G.)

Semester: B.E. IV Sem. Branch: Information Technology
Subject: Object Oriented concepts & Programming using C++

Total Theory Periods: 40 Total Tut. Periods: 10
Total Marks in End Semester Exam: 80
Minimum number of class tests to be conducted: 02

UNIT II: Classes & Object: Specifying a class, Define member function, Scope of class and its member, Nested Class, Data hiding & encapsulation, Friend function, Array within a class, array of object as function argument, function returning object, static member.

UNIT III: Constructors and Destructors: Constructor function, parameterized multiple constructor, default constructor, copy constructor, const and class, Data conversion between objects of different classes, Destructor function, Polymorphism, function overloading, Operator overloading.

UNIT IV: Inheritance, Pointer & Virtual function: Define derived classes, single inheritance, multilevel inheritance, Hierarchical inheritance, Hybrid Inheritance, Pointers to objects, this pointer, Pointers to derived class, Virtual function, Pure Virtual function, Abstract classes.

UNIT V: File I/O & Templates: files streams, opening & closing a file, read() & write() functions, detecting end-of-file, seekp(), seekg(), tellg(), tellp()function, Introduction to Templates & Exception, Creating and handling Templates and Exception in OOP.

Name of Text Books
1. OOPS with C++: E. Balagurusamy
2. OOP with C++: Robert Laphore.

Name of Reference Books
2. Programming with C++: Venugopal.
3. Programming with C++: D Ravichandran
5. C++ and OOPs Paradigm by Debasish Jana (PHI)
6. OOP-P Sengupta & B.B. Choudhari (PHI)
7. OOP with C++ by M.P. Bhave & S. A. Patekar (Pearson Education)
8. OOP with C++: Poonamchanda Sarang (PHI)
CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY,
BHILAI (C.G.)

Semester: B.E. IV Sem. Branch: Information Technology

Subject: Principles of Management Code: 322416(36)

Total Theory Periods: 40 Total Tut. Periods: 10

Total Marks in End Semester Exam: 80

Minimum number of class tests to be conducted: 03

Unit-I
Definition of Management, Nature and Basic Concepts of Management, Management and Administration, Functions of Manager & Information age; Science, theory and practice of Management.
Managerial objectives and Role, Evolution of management Thoughts, Business Environment, Social attitudes beliefs and Values, Social Responsibilities of Business.

Unit-II
Functions of Management- Planning, Nature and importance, Steps in Planning; Organizing and process of organizing; Staffing, Systems approach to staffing; Directing; Controlling and process of controlling, Decision Making.

Unit-III
Motivation-Meaning, need for motivation, Theories of Motivation.
Leadership – Meaning and styles, group and team working, HRM.

Unit-IV
Marketing function- Market and Marketing environment, Consumer / buyer behavior, marketing mix, Advertisement and sales Promotion.
Financial Management – Introduction to Book keeping and financial statements, Break Even analysis.

Unit-V
Production and Productivity, Production Planning and Control, TQM

Text Books:-
2. Luthans Fred Organizational Behavior, TMH, New Delhi

Reference Books:-
Experience to be performed (minimum 10 experiments)

1. Visual Basic- an Integrated Development Environment (IDE): An introduction, Explain New project window, Property window, Project Explorer window, Watch window, etc. Design and identity card containing information regarding students such as Name, Roll No., Address, Class studying, Date of Birth, Blood Group, Phone No., etc. Add a Exit Button.

2. Develop an application to calculate Interest. It should accept rate of interest, period for calculation of interest (years), amount on which interest is to be calculated (Rs.). After clicking Compute Investment amount (Principal + Interest) should be displayed in separate text box. Add Exit button, Proper text box controls and labels to be used. Provide 2 options- Simple, Compound interest. Provide Picture and Radio Button control.

3. Design a Simple Calculator to implement addition, subtraction, multiplication, division, remainder operations of two digits(include validation of input & proper message).

4. Create a form using check box & option box to give effect for fonts such as bold, italic, underline, strike through respectively for the text entered in the Rich Text Box (add status bar control).

5. Create a form to access drive list, directory list, and files within a directory of the computer you are using (use Tree structure, menus & toolbars).

7. Demonstrate use of Date Environment, add tables and queries, place fields on form, report etc.

9. Design a program to display regional languages of different states in India. Take many names of status of India in one list box control and other text box control should display their languages e. g. Maharashtra → Marathi etc.

10. CASE STUDY (Design and develop one of the following three case studies):
 1. Create a Scientific Calculator (add minimum 15 functions).
 2. Develop a program for Online Examination system, which includes database and record keeping facility.
 3. Develop a program for Payroll System, which can handle database as well as can print the pay slips of employees. In this system provide a Login Window, which will accept the User Name and Password. After verifying the user information, the user should get the access to Payroll System.

11. Create a Simple Notepad application, which contains Menus, Rich Text Box, Common Dialog box, Formatted text, using Toolbar, and Replace text, Windows (Tile / Cascade), Status bar and scroll bar.

12. Modify the practical No. 7 to add following buttons: FIND, ADD, DELETE, UPDATE, and CANCEL. Give proper code to perform the activity described by the buttons.

13. Display the Table Data using ADODC. Add Find, Delete, Update, Cancel Buttons on the form.

14. Display the data from two different tables having common keys using Visual data manager. Use Flex Grid control to display data.

15. Use Active –X control in the form which is created in previous practical.

List of Equipments / Machine Required:

1. P-3 or above Computer System.
2. Microsoft Visual Studies 6.0
3. MSDN Library
4. Database (Oracle / MS Access)

Recommended Books

1. Black Book (VB)
2. Complete Reference (VB)
1. Write a program to perform following in one dimensional array., Insertion, Deletion and Searching (Linear & Binary).
2. Write a program to implement stack and perform push pop operation.
3. Write a program to convert infix to postfix expression using stack.
4. Write a program to perform following operation in linear queue - addition, deletion, traversing
5. Write a program to perform following operation in circular queue - addition, deletion, traversing
6. Write a program to perform following operation of double ended queue - addition, deletion, traversing
7. Write a program to perform following operation in single link list - creation, inversion, deletion
8. Write a program to perform following operation in double link list – creation, insertion, deletion.
9. Write a program to implement polynomial in link list and perform
 a. Polynomial arithmetic
 b. Evaluation of polynomial
10. Write programs to implement linked stack and linked queue
11. Write programs to perform Insertion, selection and bubble sort.
12. Write a program to perform quick sort.
13. Write a program to perform merge sort.
14. Write a program to perform heap sort
15. Write a program to create a Binary search tree and perform –insertion, deletion & traversal.
16. Write a program to traversal of graph (B.F.S, D.F.S)

Recommended Books:

1. “Data structure using C “ by Samir kumar Bandyopadhyay, Kashi nath Dey, Pearson Education
3. An Introduction to Data Structures with Application by Tremblay & Sorenson (Tata Mc)
4. Fundamentals of Data Structure by Horowitz & Sahni (Galgotia)
5. Data Structures using C by ISRD Group (Tata Mc)
6. Data Structures using C/C++ by langsam, Augenstein & Tananbaum (PHI)
7. Data Structures & Program Design by Robert L Kruse (PHI)
Experiments to be performed: (minimum 10 experiments)

1. Static input characteristics curves of CE transistor.
2. Static output characteristic curve CE transistor.
3. Static input characteristic curve of CB transistor.
4. Static output characteristic curve of CB transistor.
5. To design and study the frequency response of single stage CE transistor amplifier.
6. To study the frequency response of RC coupled double stage CE transistor amplifier.
7. To study the frequency response of RC coupled double stage CE transistor amplifier with voltage feedback.
8. To study the frequency response of RC coupled double stage CE transistor amplifier with current feedback.
9. To plot the voltage gain vs. load characteristics of common collector (emitter follower) n-p-n transistor.
10. To study Wein Bridge Oscillator.
11. Experiment with emitter follower a voltage series feed back amplifier.
12. General study of pushpull audio power amplifier.
13. To study RC phase shift oscillator.
14. Study of various topologies of feedback amplifier.
15. Experiment with Darlington pair amplifier.

List of Equipments/Machine Required:
Circuit components, Power supply, CRO, Function generator, Multimeter, Breadboard.

Recommended Books:
Same as in theory
1. Write a Program to check whether number is prime or not.
2. Write a Program to read number and to display the largest value between:
 A. Two numbers B. Three Numbers C. Four numbers by using switch-case statements.
3. Write a Program to find sum of first natural numbers : sum= 1+2+3+4+……. 100 by using a. for loop b. while loop c. do-while loop
4. Write a Program to find sum of the following series using function declaration.
 \[\text{Sum} = x - \frac{(x)^3}{3!} + \frac{(x)^5}{5!} - \ldots \ldots \cdot \frac{(x)^n}{n!} \]
5. Write a Program to read the element of the given two matrix & to perform the matrix multiplication.
6. Write a Program to exchange the contents of two variable by using
 (a) call by value (b) Call by reference.
7. Write a Program to perform the following arithmetic operations of a complex number using a structure (a).
 Addition of the two complex numbers (b). Subtraction of the two complex numbers (c). Multiplication of the two complex numbers (d). Division of the two complex numbers.
8. Write a Program to generate a series of Fibonacci Nos. using the constructor where the constructor member function defines (a). is the scope of class definition itself (b). out of the class definitions using the scope resolutions operator. Also make this program with the help of the copy constructor.
9. Write a Program to demonstrate how ambiguity is avoided using scope resolution operator in the following inheritance (a). Single inheritance (b). Multiple inheritance
10. Write a Program to perform the swapping of two data items of integer, floating point number and character type with the help of function overloading.
12. Write a Program to access the private data of a class by non-member function through friend function where
 the friend function is declared : (1). is the location of public category (2). is the location of private category (3). With in the scope of a class definition itself (4). Defined with inline code subtraction.
13. Write a Program to demonstrate how a pure virtual function defined declared and invoked from the object of derived class through the pointer of the base class.
14. Write a Program to Bubble Sort Using template function.
15. Write a Program for invoking Generate & Handle exception.

List of Equipment/Machine Required
Pentium IV machine, Turbo C++ compiler

Name of Text Books :
1. OOP’s with C++ : E. Balaguruswamy .
2. OOP with C++ : Robert Lafore

Name of Reference Books:
1. Programming with C++ : Venugopal.
2. Object Oriented Programming in C++ : StroutStrups.
3. Let us C++ : Yaswant Kanetkar.
4. Programming with C++ : D Ravichandran
UNIT- I

HEALTH & HYGIENE: Concept of health, Physical health and mental health and wellbeing and how to achieve these, longevity and how to achieve it, concept and common rules of hygiene, cleanliness and its relation with hygiene; Overeating and undereating, amount of food intake required, intermittent fasting; adequate physical labour, sleep; consumption of junk fast food vs nutritious food; fruits, vegetables cereals and qualities of each of these.

UNIT- II

UNIT- III

YOGASANS: Meaning and concept of Yoga, Yogasans and its mode of operation, How to perform Yogasans, Common Yogasans with their benefits, such as, Padhastasan, Sarvangasan, Dhanurasan, Chakrasan, Bhujangasan, Paschimottasan, Gomukhasan, Mayurasan, Matsyasen, Matsyendrasan, Pawanmuktasan, Vajrasan, Shalabhasan, Sinhasan, Shashankasan, Surya Namaskar, Halasan, Janushirasn, Utshyp Mudra,

UNIT- IV

YOGASANS FOR COMMON DISEASES: From Yogic Materia Medica with symptoms, causes, asans and herbal treatment.

- Modern silent killers: High blood pressure, diabetes and cancer, causes and cure; Common health problems due to stomach disorders, such as, indigestion, acidity, dysentry, piles and fissures, artheritis, its causes, prevention and cure.
- Asans for relaxation: Shavasan, Makarasan, Mastyakridasan, Shashankasan.
- Asans to increase memory and blood supply to brain: Shirsh padsan, Shashankasan.
- Asans for eye sight: Tratak, Neti Kriya.
- Pranayam: Definition and types: Nadi Shodhan, Bhastrik, Shitakari, Bhramari useful for students.

UNIT V

CONCENTRATION: Concentration of mind and how to achieve it. Tratak $\frac{1}{4}=kVd\frac{1}{2}$ Concentration on breath, Japa $\frac{1}{4}t\frac{1}{2}$ Ajapajap $\frac{1}{4}v\tilde{t}k\tilde{t}\frac{1}{2}$ internal silence $\frac{1}{4}v\tilde{e}r\tilde{k}S\tilde{u}\frac{1}{2}$ visualization in mental sky $\frac{1}{4}f\tilde{p}nk\tilde{k}k\tilde{j}kJ.k\tilde{k}\frac{1}{2}$ Concentration on point of light $\frac{1}{4}T;ksfr;/;ku\frac{1}{2}$ Concentration on feeling $\frac{1}{4}Hkko;/;ku\frac{1}{2}$ Concentration on figure $\frac{1}{4}wU\tilde{k}Z;/;ku\frac{1}{2}$

REFERENCES
(1) Yogic Materia Medica
(2) Asan, Pranayam and Bandh