Subject Information

<table>
<thead>
<tr>
<th>S No.</th>
<th>Board of study</th>
<th>Subject Code</th>
<th>Subject</th>
<th>Periods per week</th>
<th>Scheme of Examination</th>
<th>Total marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L+T+P/ESE/CT/TA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESE/CT/TA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ESE/TA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Chemical Engg</td>
<td>219311 (19)</td>
<td>Chemical Process Calculations</td>
<td>4 1 -</td>
<td>100 20 20 - -</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Electrical Engg</td>
<td>219312 (24)</td>
<td>Electrical Engg and Electronics</td>
<td>3 1 -</td>
<td>100 20 20 - -</td>
<td>140</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Engg</td>
<td>219313 (19)</td>
<td>Applied Physical and Organic Chemistry</td>
<td>4 1 -</td>
<td>100 20 20 - -</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Mechanical Engg</td>
<td>219314 (37)</td>
<td>Manufacturing Process and Practice</td>
<td>4 1 -</td>
<td>100 20 20 - -</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Mechanical Engg</td>
<td>219315 (37)</td>
<td>Equipment Drawing</td>
<td>3 2 -</td>
<td>100 20 20 - -</td>
<td>140</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Electrical Engg</td>
<td>219321 (24)</td>
<td>Electrical Engg and Electronics Lab</td>
<td>- - 3</td>
<td>50 25 75</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Chemical Engg</td>
<td>219322 (19)</td>
<td>Applied Physical and Organic Chemistry Lab</td>
<td>- - 3</td>
<td>50 25 75</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Mechanical Engg</td>
<td>219323 (37)</td>
<td>Manufacturing Process and Practice Lab</td>
<td>- 3</td>
<td>50 25 75</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Chemical Engg</td>
<td>219324 (19)</td>
<td>Computer Aided Drawing in Chemical Engg. - I</td>
<td>- - 3</td>
<td>50 25 75</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Total: 18 6 12 500 100 100 200 100 1000 31

- **L** – Lecture
- **T** – Tutorial
- **P** – Practical
- **ESE** – End Semester Examination
- **CT** – Class Test
- **TA** – Teacher’s Assessment
Unit – I

Basic and derived Units, Different ways of expressing units of quantities and physical constants.

Molar concept: Inter-relationship between mass and volumetric compositions of mixtures and solutions, and ways of expressing their Compositions Like, eq.wt., Normality, molarity, Molality and PPM etc.

Unit – II

Behaviors of Ideal and real gases: Boyles law, Charl’s law, Avogadro’s hypothesis, Dalton’s law, Amagats law, vapor pressure, humidity, relative humidity, dew point and use of humidity chart.

Unit – III

Material balance: Stoichimetric relations governing chemical reactions, concept of limiting and excess reactants, tie and key components percentage conversion and degree of completion, simple recycle, bypass and purging operations, material balance, calculations of some common process.
Unit – IV

Energy Balance:

(A) Thermophysics: heat capacity of solids, liquids, gases and solutions, simple energy balance for gaseous and gas liquid, liquid-liquid systems.

(B) Thermochemistry: Heat of formation, heat of reaction and laws of thermochemistry. Energy balance calculations of common chemical processes.

Unit – V

Fuels and combustion, types of fuels, calorific values of fuel, and combustion calculations. Heat of combustion, Air requirement for combustion like theoretical air, excess air, flue gas analysis.

Text/Reference

Books:

2. Stoichiometry by – Bhatt and Vohra.

CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY, BHILAI

(A) SEMESTER : III
(B) SUBJECT TITLE : Electrical Engineering & Electronics
(C) CODE (Theory) : 219312 (24)
(D) BRANCH/DISCIPLINE : Chemical Engineering
(E) TEACHING AND EXAMINATION SCHEME :

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Periods / Week (In Hours)</th>
<th>Scheme of Examination</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>ESE</td>
<td>CT</td>
<td>TA</td>
</tr>
<tr>
<td>219312(24)</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>219321(24)</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

(F) DISTRIBUTION OF MARKS AND HOURS :

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CHAPTER NO.</th>
<th>CHAPTER NAME</th>
<th>HOURS / PERIODS THEORY</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UNIT – I</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>UNIT – II</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>UNIT – III</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>UNIT – IV</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>UNIT – V</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

COURSE CONTENTS :

Unit – I

D.C. Circuits and D.C. Machines
(B) Constructional feature of D.C. m/c, Armature winding and E.M.F. equation.
(C) D.C. Motors and their load characteristics, series, shunt, compound.
(D) Different types of starters, methods of speed control of D.C. motors.

Unit-II

(A) A.C. Circuits : Alternating current wave forms, Rms, average value, form factor, power factor, R,L, and C in A.C. circuit, 3 phase A.C. star and delta connections, different types of A.C. supply used in common industrial application i.e.1 phase, 3 phase-3 wire and 3 phase – 4 wire.
(B) Transformers : Principle of operation of emf equation, transformation ratio, construction detail.

Unit-III

Unit-IV
Electrical measuring instruments: main feature, circuit connections and uses of Ammeter, Voltmeter, Wattmeter and Multimeter, Working principles of M.I. and M.C. type instruments.

Unit-V

SUBJECT TITLE – Electrical Engineering & Electronics Lab

Practical Code: 219321(24) Total Hours: 48 hrs.

Experiments:
1. Study of D.C. m/c.
2. Speed control of D.C. Motors.
5. Star and delta connection – verification of phase and line voltage and current.
6. Determination of transformation ratio.
8. Study and operation of 3 phase squirrel cage and slop ring induction motors.
10. Study and operation of single phase induction motors.
11. Study and mode of connection of different types of measuring instruments.
12. Measurement of power and energy in a single phase circuit.
13. Measurement of power and energy in a 3 phase circuit by 2 wattmeter method.
14. Study of various electronic devices such as diodes, transistors, FET, SCR etc.
15. Study of rectifiers and observation of wave form of CRC.
16. Study of battery charging circuits.

Text/Reference Books:
1. Electrical Engg. & Electonics by B.L. Theraja.
2. Electrical Measurements by J.B. Gupta – (Dhanpat Rai and Sons Pub.)

CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY, BHILAI

(A) SEMESTER : III
(B) SUBJECT TITLE : Applied Physical and Organic Chemistry
(C) CODE : 219313 (19)
(D) BRANCH/DISCIPLINE : Chemical Engineering
(E) TEACHING AND EXAMINATION SCHEME :

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Periods / Week (In Hours)</th>
<th>Scheme of Examination</th>
<th>Credit L+(T+P)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Theory</td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L(E)</td>
<td>T(C)</td>
</tr>
<tr>
<td>219313(19)</td>
<td>4</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>219322(19)</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

(F) DISTRIBUTION OF MARKS AND HOURS :

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CHAPTER NO.</th>
<th>CHAPTER NAME</th>
<th>HOURS / PERIODS THEORY</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UNIT – I</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>UNIT – II</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>UNIT – III</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>UNIT – IV</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>UNIT – V</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

COURSE CONTENTS :

Unit-I

(A) Phase Rule : Statement and explanation, Derivation, one component system- water, Two component system-KI Water and Silver-Lead.
(B) Distribution Law : Nernst’s Distribution law : its explanation and limitations, Henry’s law, extraction and multistep extraction, Numerical problems on distribution law and extraction.

Unit-II

(A) Electrochemistry : Conductance of electrolytes and its measurement, classification of electrolytes transport number, Konlrausch’s law and its applications conductometric and potentiometric titrations. Galvanic cells, reversible and irreversible cells, polarization and decomposition potential and over voltage.
(B) Ionic equilibria : Ostwald’s Distribution law and its limitations. Debye Heich theory of strong electrolytes and degree of ionization, common ion effect and solubility product : their applications numerical on solubility product.

Unit-III

(B) Crystal Chemistry: Introduction, crystal gnisatrophy space lattice, lattice sites and coordination number, types of crystal, Defects in crystals, polymorphism and Isomorphism.

Unit-IV

The concept of hydrocarbon, valance of carbon atom, unsaturation in carbon compounds, Empirical, molecular and structural formula, classification of organic compounds Homologous series IPLIAC system of nomenclature, Isomerism, chain, functional and positional isomerism, types of organic reactions.

Unit-V

Lab preparation, properties and uses of the following organic compounds, Chloroform, Carbon tetrachloride, Grignard reagent, Oxalic acid, Acetone, Benzene, Ethylamine, Diazonium salt, and phenol.

SUBJECT TITLE – Applied Physical and Organic Chemistry Lab

Practical Code: 219322(19)
Periods: 48 hrs.

Experiments:

1. To verify adsorption isotherm.
2. To determine partition coefficient.
3. To find the equilibrium constant for the reaction $\text{KI} + \text{I}_2 \rightarrow \text{KI}_3$
4. Purification of common salt.
5. Conductiometric titration.
6. Potentiometric Titration.
8. Identification of halogen, nitro, amino carboxylic, aldehyde and ketonic group in orgnic compounds.
9. Laboratory Preparation of organic compounds appeared in unit V.

Text/Reference Books:

1. Essentials of physical chemistry by B. S. Bahl and G. D. Tuli.
3. Chapters in physical chemistry by B. N. Phadke.
6. Physical chemistry - Dr. G. L. Agrawal & Other.

(A) SEMESTER : III
(B) SUBJECT TITLE : Manufacturing Process and Practice
(C) CODE : 219314 (37)
(D) BRANCH/DISCIPLINE : Chemical Engineering
(E) TEACHING AND EXAMINATION SCHEME :

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Periods / Week (In Hours)</th>
<th>Scheme of Examination</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219314(37)</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>219323(37)</td>
<td>-</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

(F) DISTRIBUTION OF MARKS AND HOURS :

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CHAPTER NO.</th>
<th>CHAPTER NAME</th>
<th>HOURS / PERIODS THEORY</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UNIT – I</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>UNIT – II</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>UNIT – III</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>UNIT – IV</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>UNIT – V</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

COURSE CONTENTS :

Unit-I
Metal Casting:
Pattern making: different types of pattern material, types, allowances, cores and core prints, moulding, moulding sand and its composition: types and properties, different moulding processes like green sand moulding, dry sand moulding etc. special moulding processes.
Casting Processes: Pouring equipment, metal casting defects.

Unit-II
Metal working: Hot working and cold working recrystallization temp. types of hot and cold processes i.e. rolling, spinning, extraction, forging, drawing etc. simple press units and its parts, press working operations.

Unit-III
Metal machining: fundamentals of different machining processes, Lathe machine: general descriptions and operations like turning, threading, grooving, boring etc. Drilling machines: different parts, types and operations like drilling, reaming etc.
Unit-IV

Metal joining: types of welding processes, plastic welding, fusion welding, resistance welding, arc welding, gas welding, welding equipments and tools, types of weld, types of electrode, weldibility of metals, other joining techniques, soldering and brazing.

Unit-V

Powder metallurgy: Introduction, scope, powder making, comparting, sinking, limitations.

SUBJECT TITLE – Manufacturing Processes and practice Lab

Practical Code: 219323(37) Total Hours : 48 hrs.

Experiments :
1. To prepare a solid pattern.
2. To prepare a core box.
3. Practice of making green sand moulding.
4. Pairing of the mould with suitable material e.g. cast iron, aluminum etc. press and searching for different defects.
5. Practice of making a washer on fly press.
6. Practice of making a chisel in smithy shop.
7. Practice of making corner joint and T joint in a welding shop.
8. Practice of spot welding on sheets.
10. Practice of brazing.
11. Practice of plain turning, step turning, grooving and boring.
12. Practice of knurling and threading.
13. Practice of making drill on flat pieces.
15. Practice of sawing, filling and fitting of small rectangular pieces, preparation of edges for welding.
16. Practice of piercing, notching, and circle cutting with the help of a metal master, machine.

Text/Reference Books :
2. Workshop Technology Vol I & II by – Raghuvanshi
5. Foundary Practice, Asia Publication.
7. Mechanical Technology by Charnote.
8. Forging and Forming by Russi and Noff.

CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY, BHILAI

(A) SEMESTER : III
(B) SUBJECT TITLE : Equipment Drawing
(C) CODE : 219315 (37)
(D) BRANCH/DISCIPLINE : Chemical Engineering
(E) TEACHING AND EXAMINATION SCHEME :

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Periods / Week (In Hours)</th>
<th>Scheme of Examination</th>
<th>Credit L+(T+P)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>219315(37)</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

(F) DISTRIBUTION OF MARKS AND HOURS :

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>CHAPTER NO.</th>
<th>CHAPTER NAME</th>
<th>HOURS / PERIODS THEORY</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>UNIT – I</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>UNIT – II</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>UNIT – III</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>UNIT – IV</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>UNIT – V</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

COURSE CONTENTS :

Unit-I
Review of orthographic projections, multiview drawing principles and selection of view to describe object, simple problems.

Unit-II
Sectional views : Necessity of sectioning, representation types of sectional views such as half and full sectional view problems on sectioning.

Unit-III
Pipes and pipe joints : Types and symbols of pipe fittings such as elbow, tee bend, union, crosses nipples, flange plug etc. as per I.S. code requirements pipe joints.

Unit-IV
Fastening : Nuts, Bolts, keys, Rivets and Riveted joint, welded joints, cotter joint, pin joint, knuckle joint.

Unit-V
Assembly drawing : Glands, stuffing box and flange coupling.

Text/reference:
Books:

CHHATTISGARH SWAMI VIVEKANAND TECHNICAL UNIVERSITY, BHILAI

(A) SEMESTER : III
(B) SUBJECT TITLE : Computer Aided Drawing in Chemical Engg. - I
(C) CODE (Practical) : 219324 (19)
(D) BRANCH/DISCIPLINE : Chemical Engineering
(E) TEACHING AND EXAMINATION SCHEME :

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Periods / Week (In Hours)</th>
<th>Scheme of Examination</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>219324(19)</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE CONTENTS :

1. **Introduction To Auto CAD and its Applications**
 Hardware and software of Auto CAD, Features of Auto CAD, Input Devices, Creating a new drawing, prototype creation, Opening and saving of drawing, Use of menu systems; pull down menu, cursor menu, floating/docked pallets with fly outs, side screen menu, Use of Key board input, Setting of units and limits of a drawing.

2. **Drawing Commands**
 Understanding Co-ordinate Systems; Absolute Co-ordinates, Relative Co-ordinates, Polar Co-ordinates, Creation of lines and polylines, ARC command, Creating Circles and Ellipse, Drawing of uniformly shaped polygon.

3. **Editing Commands**
 Selection of geometry with various options, Creation of groups, Cleaning up a drawing: ERASE, UNDO, REDO, Commands for positioning objects: MOVE, ROTATE, STRETCH, SCALE, Commands for changing an entity's length: TRIM, EXTEND, LENGTHEN, BREAK, Construction editing commands: COPY, MIRROR, OFFSET, ARRAY, FILLET, CHEMFER, Setting of object creation modes, Modifying an entity by DDMODIFY command.

4. **Precision Input Commands, Annotating the Drawing and Plotting.**
 Precision Input Commands; Controlling the Environment with Drawing Aids dialogue box:, Blips, Highlighting selected objects, Solid fill display, Grid reference, Snap to reference grid, Ortho tool, Transparent commands: ZOOM, PAN, REDRAW, Object Snaps and Running object snap, Creating complex object with BLOCK and WBLOCK, Annotating the Drawing - Dimensioning the object; Setting the Dimension style, Linear Dimension, Aligned Dimension, Radial Dimension, Angular Dimension, Ordinate Dimension, Baseline Dimension, Continue Dimension, Leader Dimension, Cross-Hatching, Writing Text with - TEXT, DTEXT, MTEXT, Use of layer to organize the drawing; Creating and controlling the layers with DDLMODES, plotting the AutoCAD drawing.

5. **Introduction to 3 D drawing**
 3D drawing using Isometric grid, 3D drawing using Solids and surfaces preparation of 3D solids using commands; extrusion, revolve, etc.

6. **Introduction to Pro-Engineer Software**
 Pro/draw- Define multiple drawing views, Create geometry with user friendly mouse and keyboard interface, Modify geometry easily using a comprehensive set of tools, fully annotate drawing
adhering to industrial standards, Solid modeling with Pro/engineer, (Pro/part) - Feature based, associative and parametric solid modeling. The screen layout, pull down menu, toolbars, display area, message area, Types of sketched feature; Protrusion cut and slot, Use of base feature and datum plane, Extrude, sweep, blend, and Revolve, Duplication; copy, mirror, and pattern.

7. **Introduction to Auto LISP**

 Understanding the Auto LISP interpreter, Auto LISP Expressions, Variables and Data Types, functions used in AutoLISP: Setq, car, cdr, get point, get corner, Introduction to function for obtaining user input, like getting, get real, get point, get string, get angle, An Auto LISP programme to crate BOX.

Note: All the topics will be taught on computer during practical.

Practical/Term-work - Practical/term-work will consists minimum twenty sketches based on above topics.

Text/Reference Books:

- Jhon W.Gibbs : "Teach Your self Auto CAD Release 13 for Windows"
- Krik Othmer: "Encyclopedia of Chemical Technology", Volume _ 19
- Richardson and Couluson; "Chemical Engineering".
